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A theoretical simulator of immiscible displacement of a non-wetting fluid by a wetting 
one in a random porous medium is developed. The porous medium is modelled as a 
network of randomly sized unit cells of the constricted-tube type. Under creeping-flow 
conditions the problem is reduced to a system of linear equations, the solution of 
which gives the instantaneous pressures at the nodes and the corresponding flowrates 
through the unit cells. The pattern and rate of the displacement are obtained by 
assuming quasi-static flow and taking small time increments. The porous medium 
adopted for the simulations is a sandpack with porosity 0.395 and grain sizes in the 
range from 74 to 148 pm. The effects of the capillary number, Ca, and the viscosity 
ratio, K = ,uo/,uw, are studied. The results confirm the importance of the capillary 
number for displacement, but they also show that for moderate and high Ca values 
the role of K is pivotal. When the viscosity ratio is favourable (K  < l), the 
microdisplacement efficiency begins to increase rapidly with increasing capillary 
number for Ca > On the other hand, when 
the viscosity ratio is unfavourable (K > l), the microdisplacement efficiency begins 
to improve only for Cu values larger than, say, 5 x and is substantially inferior 
to that achieved with K < 1 and the same Cu value. In  addition to the residual 
saturation of the non-wetting fluid, the simulator predicts the time required for the 
displacement, the pattern of the transition zone, the size distribution of the entrapped 
ganglia, and the acceptance fraction as functions of Ca, K ,  and the porous-medium 
geometry. 

and becomes excellent as Cu-+ 

1. Introduction 
Displacement of a non-wetting fluid by a wetting one in a porous medium is 

encountered in many important processes. An application of great practical and 
theoretical importance is the production of oil from reservoir rocks. Other examples 
include the imbibition of water into the soil, displacing the air in it, during 
agricultural irrigation or the formation of aquifers. Here, we will focus our attention 
on problems relating to oil production, where the two fluids are oil and an aqueous 
phase. The basic results, however, apply to any pair of fluids, if one substitutes 
wetting fluid for water, and non-wetting fluid for oil. 

Reservoir rocks are inhomogeneous and have several characteristic lengthscales. 
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Packings of grains, such as sand and glass beads, are macroscopically homogeneous, 
and their pore structure has some significant differences from that of sedimentary 
rocks. Despite these differences, packings of grains are often used as convenient 
physical models in order to  study flow in permeable rocks. We will do so here. The 
most fundamental lengthscale in porous media is that  of pores and grains. I n  the 
present work we are interested in microdisplacement, that  is, displacement phenomena 
whose characteristic lengths are of the order of 1-100 grain diameters. 

The pore network can usually be thought of as a set of chambers interconnected 
with narrow throats. The variables of interest are the porosity, the size distribution 
of the chambers, the size distribution of the throats, the throat-to-chamber co- 
ordination number, and the type of ‘skeleton’ of the network. Another parameter 
that  can be significant, especially in cases of very good wettability, is the micro- 
roughness of the pore walls. 

When two immiscible fluids flow in a porous medium, the main stresses are 
pressure, interfacial tension, viscous stresses, and hydrostatic pressure. The capillary 
number, Ca = ,uw Vw/mow, expresses the magnitude of the ratio of the viscous stresses 
in the water over the capillary pressure. Other pertinent dimensionless numbers are 
the viscosity ratio, K = ,uo/,uw, and the Bond number, Bo = @ w - p 0 ) g d 2 / 4 ~ 0 w .  The 
Bond number expresses the magnitude of the buoyancy force over the capillary force. 
On a macroscopic scale, buoyancy is an important factor. However, on the microscale 
it can frequently be ignored. When i t  must be taken into account, it can be easily 
incorporated in the calculation through the hydrostatic pressure. Depending on the 
values of Ca and K ,  imbibition can be classified into several flow regimes. Such a 
classification was proposed in Payatakes & Dias (1984). In  general terms, for 
Ca < the capillary forces are dominant and we have slow imbibition, whereas for 
Ca > the viscous forces become important and we have dynamic invasion. 

Under conditions of dynamic invasion, the role of K is crucial, as expected. For 
favourable viscosity ratio ( K  < I ) ,  one observes a relatively smooth displacing front. 
A certain amount of oil gets disconnected from the retreating bulk of oil and forms 
oil ganglia that  become entrapped, but the overall microdisplacement efficiency is 
high. For unfavourable viscosity ratio ( K  > l ) ,  the dominant phenomenon observed 
is macroscopic viscous fingering. This adverse effect leads to small sweep efficiencies 
and poor oil recovery, On the microscale, one observes an irregular displacing 
front, formation of many ganglia, and small microdisplacement efficiency. 

Under conditions of slow imbibition, the importance of K is expected to  be smaller, 
but i t  is not yet clear whether the role of K can be entirely neglected or not. As we 
will see later in this article, it seems that K has a discernible effect on microdisplacement 
even for very small Ca values. 

Two different methodologies have been developed in order t o  study microdisplace- 
ment. One comprises percolation methods and the other two-phase microflow 
simulators. The applicability of percolation methods is restricted to  slow imbibition. 
On the other hand, microflow simulators can be used for all flow regimes, thus being 
much more general than percolation models. An evaluation of percolation models and 
microflow simulators is given in the review by Payatakes & Dias (1984). A major 
shortcoming of many percolation models is that  they are static, in the sense that they 
do not consider the sequence with which the various menisci advance within the pore 
structure. The only percolation model that takes into account the sequence of the 
advance of the menisci is the invasion percolation model developed by Chandler 
et al. (1982), and by Wilkinson & Willemsen (1983). I n  general, all the percolation 
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models that have been proposed so far have nothing to say about the rates with which 
the menisci advance and the fluids flow. 

A two-fluid microflow simulator was developed by Koplik & Lasseter (1982). The 
most attractive feature of this simulator is that it is based on a sophisticated porous- 
medium model, composed of randomly sized spherical chambers connected by 
randomly sized cylindrical throats. The network has random coordination number 
and interwoven'throats, so that it is topologically non-planar. A shortcoming of this 
simulator is that it is based on the assumption that the viscosities of the two fluids 
are equal. Another problem is that it requires very long computational time. Its CPU 
time increases as 0(2N), where N is the number of chambers. For this reason, Koplik 
& Lasseter limited their simulations to networks not larger than 10 x 10. 

The simulator proposed here is based on a somewhat simpler porous-medium model. 
On the other hand, it is faster, can be used with larger networks, and can be applied 
for any value of the viscosity ratio. 

2. Model formulation 
2.1. Porous-medium model 

Porous-medium models are simplified mathematical representations of real porous 
media. The objective of a porous-medium model is to provide a reasonable idealization 
of the complex structure of the prototype porous medium so that the transport 
process of interest can be treated mathematically. To this end the model must 
incorporate the most relevant characteristics of the prototype, while its complexity 
should be kept at a manageable level. Networks of pores of converging-diverging 
geometry seem to be suitable for the simulation of immiscible displacement in porous 
media. 

Such a model, pertaining to sandpacks and beadpacks, was developed by Payatakes, 
Ng & Flumerfelt (1980). It consists of a network of randomly sized unit cells of the 
constricted-tube type. A typical unit cell is shown in figure 1. Each constricted unit 
cell represents a throat and part of each of the two chambers that are adjacent to 
the throat. A representation of a random square network of constricted unit cells is 
given in figure 2. This depiction and the nomenclature used are similar to the ones 
used in Payatakes et al. (1980). Each node is connected to four unit cells. Unit cells 
are represented by bow-tie symbols whose sizes are proportional to the actual size 
of each unit cell. One node and the adjacent four half-unit cells comprise a conceptual 
elemental void space (CEVS), and represent an elemental void space (EVS) of the 
prototype, namely a chamber and half ofeach throat connected to it. The node-to-node 
distance, 1,  is assumed to be constant and equal to the length of periodicity of the 
porous medium. It is assumed that each throat is characterized by the diameter of 
its narrowest cross-section, d ,  and each chamber is characterized by the effective 
chamber diameter (diameter of the sphere with equivalent volume), D. In  random 
sandpacks both d and D are random variables. The probability distribution function 
for the throat diameter d and the chamber diameter D will be referred to as throat 
size distribution and chamber size distribution respectively. Each unit cell has axial 
symmetry, and its wall profile is a sinusoidal function (figure 1). The distance, rw, 
of the wall from the axis at some position z is given by 

( a + d ) - ( a - d )  cos 
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FIQURE 1. Typical unit cell of the porous medium model. The unit cell is divided into ten 
compartments showing compartments k, and k, used to calculate the effective conductance and 
the effective pressure drop respectively. 

FIQURE 2. Depiction of a square network of unit cells. A CEVS, a UC and 
are identified, as well as an 8-CEVS ganglion. 

a GUC 

where a and d are maximum and minimum diameters of the sinusoidal function and 
h is its wavelength. According to the PTT (Payatakes, Tien & Turian 1973) porous- 
medium model, the unit-cell dimensions are set so that 

a = c , d ;  h = c,d, (2) 

where c1 and c2 are constants, the values of which depend on the geometry of the 
sandpack. Payatakes et al. (1980) found that in order to retain these realistic unit- 
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cell dimensions, to properly account for the chamber interconnectivity and to pre- 
serve the volume and porosity of the prototype as well as the number of constric- 
tions per unit volume, the PTT formulation had to be modified. The proper unit cell 
in this modified PTT is the segment corresponding to ( -ih’ < z G ih’) in figure 1 ,  
where h’ is the unit-cell length (h’ < h),  and is given by 

h‘ = c2c3d, (3) 
where c3 is a constant. All three constants (cl, c2, and c3) depend on the particular 
porous medium, and are calculated from experimental measurements of the porosity, 
the initial drainage curve and the grain-size distribution, aa described by Payatakes 
et al. (1973) and Payatakes et al. (1980). The segment corresponding to (-&h < z < &h) 
is called an extended unit cell (EUC) and it is also retained as part of the model 
because it is useful in specifying the rules of motion of the oil-water interfaces in the 
chambers (or CEVSs), as we shall see later in this work. 

This model applies to unconsolidated porous media such as sand or bead packs. 
For consolidated porous structures (sandstones, limestones, etc.), the sinusoidal shape 
of the unit cell and the relations between its minimum and maximum diameters and 
length should be modified and their size distributions calculated independently by 
serial tomography of pore casts in conjugation with porosimetry and imbibition/ 
drainage curves. 

Oil and water can be assigned to the porous space at will. For example, an 8-CEVS 
ganglion is depicted in figure 2. According to the model, when a CEVS is occupied 
by oil, the oil fills part of each of the six unit cells associated with the CEVS under 
consideration. Note that in this particular representation, unlike the one used by 
Payatakes et al. (1980), the volume of oil associated with a particular CEVS may be 
larger (CEVS A, figure 2) or smaller (CEVS B, figure 2) than the CEVS volume. This 
happens because in the present simulation the volume of oil is not assumed to be equal 
to an integer number of CEVS volumes. The representations of an oil ganglion 
occupying several adjacent pores or of a continuous oleic phase occupying a part of 
the network are done in a similar way. A unit cell in which an oil-water interface 
exists will be denoted as a GUC (gate unit cell), or as an EUC if it temporarily takes 
the form of an extended unit cell (see below). 

2.2. Solution of the $ow in the network 
Under creeping-flow conditions the equations governing the flow in the network are 
linear. Assuming quasi-steady state, the problem for a certain flow situation is 
reduced to a system of linear algebraic equations as follows. 

The nodes of the network (excluding the boundary ones) are numbered in a 
convenient - but arbitrary - manner by assigning indices k = 1,2, . .., Np, where Np 
is the number of interior nodes. The branches (or unit cells) of the network are also 
given indices, j = 1, 2, . . . , Nb, where Nb is the total number of branches. On each 
branch the ‘positive’ flow direction is chosen arbitrarily. 

The branch conductance matrix G, having dimensions N b x N b ,  is formed as 
follows: the off-diagonal elements are set equal to zero; each diagonal element, gjj, is 
set equal to the hydraulic conductance of the unit cell occupying branchj (see $2.3.4). 

The pressure-source vector, o,, having Nb elements, is defined so that us, is the 
capillary pressure in thej th  unit cell. The value of us* is nil if there is no interface 
in the corresponding UC; it is positive if there is an interface which tends to propel 
the wetting fluid in the ‘positive ’ direction of the branch; it is negative if the interface 
tends to propel the wetting fluid in the ‘negative’ direction of the branch. If branch 
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j is adjacent to a boundary node, the value of us, is augmented by adding the value 
of the pressure at the boundary node (see $2.2). 

The reduced incidence matrix, A ,  has dimensions N p  x N,, and it describes the 
manner in which the branches are connected. The element uq is set equal to: 0 if 
branch j is not incident on node k ;  1 if the fluid in branch j flows towards incident 
node k ;  and - 1 if the fluid in branch j flows away from incident node k. 

The node conductance matrix Y ,  having dimensions N p  x N p ,  is defined aa follows: 
ykk,  called the self-admittance of node k, is the sum of the conductances of all branches 
connected to node k ;  ymk = ykm, called the mutual admittance between nodes m and 
k, is the negative of the conductance of the branch connecting nodes m and k (nil, 
if nodes m and k are not directly connected). 

The node voltage vectorp, having N p  elements, is defined so that p k  is the pressure 
at node k. Based on standard network analysis (see for example, Desoer & Kuh 1969), 
the instantaneous value of p is obtained as the solution to the system 

YP = 4 9 ,  (4) 

qs = AGu,. (5 )  

where qs is the node flow-source vector, has Np elements and is given by 

Equation (4) is solved with standard numerical techniques. 
The flowrate vector q,  having N p  elements, is defmed so that qj is the instantaneous 

flowrate in the j t h  unit cell. Oncep is obtained from solving (4), q is readily determined 
from 

4 = G(u,-u,). (6) 

Here ub is the branch pressure drop vector and itsjth element is the pressure drop 
along the ‘positive’ direction of branchj. This vector is readily calculated as 

u,, = A T p .  (7) 

2.3. Boundary conditions 
2.3.1. Boundary conditions at the inlet and outlet ofthe network 

Let us consider a network with dimensions N ,  x N,, where N ,  is the number of 
unit cells in the 2-direction and Nu is the number of unit cells in the y-direction. In 
this work we choose the y-axis to be parallel to the direction of the macroscopic flow. 

We assume that all N ,  unit cells at the inlet of the network are connected to a 
reservoir of water at pressure P,, whereas the N ,  unit cells at the outlet are connected 
to a sink of pressure Po, and for simplicity we set Po = 0. The pressure difference is 
set as 

Here, V P  is the pressure gradient that would be required in order to drive a flood 
of water with capillary number equal to a predescribed value Cu, in a virtually oil-free 
(water saturation S,+l) sample of the porous medium. Since this value of the 
pressure gradient is given by 

-vp = ~ 

AP = PI - Po = ( - V P )  lNu. (8) 

(9) goow C% 
k ’  

where k is the absolute permeability of the porous medium, we get 
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The most appropriate absolute permeability value to be used in (10) is that 
pertaining to the mesoscale, namely the permeability of a sample with characteristic 
length of the order of lo8 grain diameters or larger. In  order to avoid flow calculations 
in such large networks the mesoscale value of k is obtained as the average of the 
permeabilities of many small samples with characteristic length of the order of 10 
grains. The permeability of each small network is obtained by solving the problem 
of water flow in it with the electrical analogue and setting k = 1N,p, Vw/AP. 

2.3.2. Boundary conditions at the sides of the network 
Three different types of boundary conditions that can be imposed at  the network 

sides are: ( a )  periodicity in the lateral direction; (b) flow of wafer and/or oil through 
the sides under prescribed conditions; and (c) impermeable lateral walls (i.e. neither 
oil nor water can flow through the sides). In this work we assume lateral periodicity. 
In this way, the dimensions of the network in the x-direction can be considered as 
infinite (of course, the basic N ,  x N ,  network segment must be as large as possible 
in order to be representative of the prototype). 

2.3.3. Conditions for constant-Ca Jlooding 
Since the network is initially filled with oil which, during flooding, gets gradually 

displaced by water of different viscosity, the pressure values at the nodes in the 
network change with time even though the overall pressure difference, AP, is fixed. 
The actual capillary number also changes, as microdisplacement proceeds, without 
ever reaching the limiting value Ca,. In processes controlled by capillary suction, as 
for example free imbibition, the capillary number can change by several orders of 
magnitude before steady state is reached (see below). If the goal is to simulate 
displacements with a nearly constant capillary number, two different approaches can 
be used; either a controllable back-pressure is applied across the network to keep the 
water flowrate constant, or a long network is attached to the segment under 
consideration, as a big resistor in series. Of the two approaches, the second one seems 
to be more realistic. Adding a long network at the end of the N ,  x N,, segment has 
the effect of dampening the changes of Ca while displacement is still confined in the 
small segment. 

In  order L~ reduce computational time and memory requirements the following 
device is used. The ‘long’ network at the end of the N ,  x N ,  segment is actually 
created by replacing the exit unit cells (the ones connected to the sink of nil pressure), 
with a ‘tail’ of uniform unit cells of very small hydraulic conductance. The value of 
the conductance of these unit cells is chosen so that their hydraulic resistance is equal 
to that of the long network for which they stand. It is clear that this technique can 
only be used while the aqueous phase is still at some distance from the end of the 
network. For this reason, the simulations of imbibition and dynamic displacement 
in a 15 x 30 network were actually performed in a 15 x 40 network with modified ‘tail ’ 
unit cells. Each simulation was stopped when all the oleic phase behind the 30th layer 
of unit cells became disconnected and stranded, so that in effect the displacement 
study was performed in a 15 x 30 segment of a much longer network. 

Figure 3 shows the initial stage of the simulation of imbibition in a 15 x 30 network 
representing a 100 x 200 sandpack with periodic lateral boundary conditions and the 
macroscopic pressure gradient parallel to the y-axis. Here we show two different, but 
equivalent, schematic representations of the network. In  figure 3 (a) the porous 
medium is depicted as a network of unit cells as described above (see figure 2). 
Figure 3 (b) was obtained by representing each CEVS containing oil as a circle whose 
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FIGURE 3. Depictions of a square network of unit cells saturated with oil, showing the position of 
the oil-water interfaces at t = 0: (a) the porous medium is depicted aa a network of unit cells; ( b )  
the porous medium is depicted by representing each CEVS containing oil aa a circle whose diameter 
is proportional to the volume of the CEVS. CEVSs filled with water are not shown. 

diameter is proportional to the volume of the CEVS. CEVSs filled with water are not 
shown. For simplicity, the throats connecting CEVSs are represented by lines of the 
same thickness, although, in fact, these throats have random sizes. Since this last 
representation is much simpler than the one previously used (see for example, 
Payatakes & Dias 1984; Dias 1984), it  will be used in the remainder of this work. 
The ‘tail’ unit cells are not shown. 

The same initial configuration (a network filled with oil) is assumed in all the 
simulations in this work, so for the sake of brevity, the initial stage will not be 
repeated in the schematic representations of the simulations that follow. 

2.4. Flow equations 

2.4.1. Single-phase j b w  conductance 
Single-phase flow through constricted tubes has been the object of extensive study. 

The problem of laminar Newtonian flow through periodically constricted tubes for 
small and intermediate Reynolds numbers was solved by Payatakes et al. (1973) using 
a hite-difference method of the stream function-vorticity type. Other efforts in this 
area include the works by Chow & Soda (1972), Deiber & Schowalter (1979) and 
Fedkiw & Newman (1977). In  the small pores in which immiscible microdisplacement 
occurs, we have Re < 1 and the flow is creeping. Collocation solutions of creeping 
Newtonian flow through periodically constricted tubes with piecewise-continuous 
wall profile and through sinusoidal tubes were obtained by Neira & Payatakes (1978, 
1979). Recently Tilton & Payatakes (1984) noted that the solution given by Neira 
& Payatakes (1979) resulted in a velocity singularity along the tube axis. The pressure 
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drop predicted by the corrected solution agreed quite closely with those originally 
reported by Neira & Payatakes (1979), due to the fact that very little viscous 
dissipation takes place near the axis of the tube. 

The solution by Tilton & Payatakes is used here in order to calculate the 
conductance of a unit cell filled with a single fluid. The pressure drop along a unit 
cell, AP,,, and the flowrate through it, quc, are related by 

Here, AP;" is a convenient parameter, defined as the dimensionless pressure drop along 
the extended unit cell for creeping-flow conditions and Reynolds number equal to 
unity. AP,* is a function of the minimum and reduced radii of the sinusoidal tube. 

2.4.2. Two-phase JEOU, conductance 
Few experimental and theoretical studies of two-phase flow in constricted tubes 

have been made. A review of these works is contained in Payatakes & Dias (1984). 
Owing to the complexity of the subject an exact solution of immiscible displacement 
in a periodically constricted tube is not available. In  order to overcome this difficulty 
in the present study, we use an approximation baaed on lubrication theory. 

Sheffield & Metzner (1976) used lubrication theory to obtain an approximate 
solution to single-phase flow through a sinusoidal tube. The pressure gradient at a 
position z is assumed to be given by 

and the pressure drop is obtained by integrating (12) over the corresponding length. 
This method approximates the sinusoidal tube as a series of infinitely short cylindrical 
tubes whose diameters vary sinusoidally with axial position. Prasad (1978) obtained 
similar results by approximating the sinusoidal tube as a series of cones of infinitesimal 
length. In his study, Prasad found the Sheffield & Metzner method to be sufficiently 
accurate and within 20% error of the collocation solution obtained by Neira & 
Payatakes (1979). For simplicity (12) is used to calculate conductances of gate unit 
cells. 

Integrating (12), the pressure drop between any two points z1 and z,, we obtain 

sinx z(zJ 2+3b2 ( 1 - b2)f tan $1 z(2J 

[ tan-l 9 (14) 
( l - b  COSX) I +  Z(z,) (1-b2)f (1-b)  Z(Z1) 

and 
c,-1 2x2 

b = -  x = -  
c l + l '  c ,d '  

For a gate unit cell, assuming the interface to be at some position z,, we get 

@(zg) = @( -@', 2,) + AP(zg, @') , (16) 
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G(zi) = { 210pwcz [Y(-$’, z t ) + ~ ! P ( z t ,  ?&’)IF1, 
n2da(c, + 1)4 (17) 

2.4.3. Pressure drop across an interface 

Making a Washburn (1921) type of approximation, that is, assuming that the effect 
of capillary forces is to cause a pressure jump across the oil-water interface which 
is equal to that which would be caused if the fluids were stationary, it can be shown 
(in analogy with Oh & Slattery 1979) that 

where zi is the axial position of the solid-oil-water contact line, 

cos 8 + sin 8 tan a 
cosp = 

(1 + tanza); ’ 

and 8 is the contact angle. 

2.4.4. Effective conductance and pressure drop across an interface 

It is clear from (17) and (18) that both the conductance and the pressure drop across 
an interface for a gate unit cell depend on the position of the interface. It is possible 
to calculate the values of the conductance and of the pressure drop across an interface 
knowing the position of the interface, but since the interfaces are constantly moving 
this would result in a large computational effort. 

In  order to reduce the computational effort, without undue sacrifice of accuracy 
or changes in the predicted flow behaviour, the following approach was taken. Each 
gate unit cell is divided into several compartments (usually 10 to 20). For simplicity 
the compartments are equally spaced, that is, Z,-Z,-~ = zk+,-zk, where z, is the 
axial position of the division corresponding to compartment k .  The extended unit 
cell is also divided into equally spaced compartments. Figure 1 shows an example 
of a unit cell divided into ten equally spaced compartments as well as the corresponding 
extended unit cell. 

The volume of the compartments located at or near the throat is smaller than the 
volume of those compartments at either end of the unit cell. This is a precaution 
designed to provide for the fact that both the pressure drop across an interface and 
the conductance change more rapidly in the throat region for a given change in the 
volume of oil. 

The effective conductance, Geff, is estimated as follows. Take V, to be the volume 
of oil contained in the gate unit cell at  a given instant. There is a compartment 
number, k,, for which V,,-, < V, < VkG, where V,,-, and V,, are the volumes of 
the part of the constricted tube up to z,,-~ and zkG, respectively. GeIf is estimated 
to be equal to the conductance that would be obtained if the pseudo-interface were 
situated at the plane bisecting compartment k,, that is at  Z, = +(zkG+zkC-,) .  

In  the calculation of GefP the shape of the meniscus and the actual position of the 
solid-oil-water contact line are not taken into account, since (17) was derived 
assuming a flat interface. On the other hand, the calculation of the pressure drop 
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across an interface using (18) to (20) assumes a spherical shape for the interface, and 
the actual position of the contact line for a given volume of oil depends on the contact 
angle. The compartment number, k,, where the contact line is located is calculated 
given the contact angle, 8, the volume of oil in the gate unit cell, V', and assuming 
a spherical shape for the meniscus. The effective pressure drop, APeff, is taken as the 
one that would be obtained if the interface were situated at the bisector of this 
compartment, that is, zp = i (zkp+zkp-- l ) ,  where zkp and zkPpl are the axial positions 
of the divisions at both ends of compartment k,. 

Figure 1 shows the position of k, and k, for a given volume of oil in a typical unit 
cell and perfect wetting conditions, 8, = 0". 

2.5. Motion of interfaces at the nudes 
Due to the converging-diverging geometry of the unit cells and the randomness of 
their sizes, it is clear that the flow field will change constantly as the oil progresses 
in the gate unit cells. Using network analysis, the pressure at the nodes and the 
flowrates in the unit cells at each instant can be calculated if the position and volume 
of oil in each gate unit cell are known. Assuming pse'udosteady-state conditions, a 
small time step, At, can be determined so that during At the flowrate through each 
gate unit cell can be considered aa constant. To this end, the time increment, At, 
is chosen so that each interface moves by no more than one compartment in the 
corresponding gate unit cell. This is accomplished as follows. A time increment for 
each GUC, At,, i = 1, . . . , NGuc, (NGuc is the total number of GUCs) is calculated by 
dividing the volume of the compartment containing the interface by the flowrate 
through gate unit cell i. If the interface is located at a compartment at either end 
of the gate unit cell, At, is calculated by assuming that the interface moves to the 
end of the GUC, that is the unit cell gets filled with either oil or water. Finally, the 
time increment is given by At = min{At,; i = 1, ..., NGuc}. 

Once the proper time increment is determined, the volume of oil in all GUCs is 
updated according to their respective flowrates and the total time elapsed is recorded. 
This process is repeated until one of the following events occurs : a gate unit cell fills 
with oil and oil invades the pore upstream - a xeron ; or a gate unit cell gets emptied 
of oil and the pore is invaded by water - a hygron. When one of these events occurs, 
motion rules are applied in order to determine the fate of the interface at this point. 
These rules are discussed below. 

2.5.1. Occurrence of a xerm 
For simplicity, consider a single 6-CEVS ganglion in a monosized network of unit 

cells (figure 4a). Under the applied macroscopic pressure gradient, the ganglion will 
move forward as the interfaces advance in their respective unit cells. Some time later, 
the unit cell most downstream becomes filled with oil (unit cell A, figure 4c). 

Before going on, it is necessary to decide what configuration to assign to the 
interface which is ready to leave unit cell A (figure 4c). A first and simple-minded 
approach would be to create three new interfaces at the three downstream unit cells 
belonging to the same CEVS by placing small amounts of oil in their first compartments 
(unit cells B, C and D, figure 4c). This approach does not work well, because on the 
very next step the flowrate through one of these three unit cells is likely to be negative, 
causing the corresponding interface to disappear from the unit cell and creating a 
'negative' oil volume in it. Clearly, this procedure would be neither convenient nor 
in accord with the physics of the situation. 

The approach we adopted is as follows. We assume that in a situation like this, 

11 FLM 184 
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FIGURE 4. Stages in the simulation of the motion of a 6-CEVS ganglion. 
Occurrence of a xeron followed by a hygron. 
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unit cell A takes automatically its extended configuration (-+h’ < z < ih)  (figure 4 d )  
and that the oil is allowed to start filling this extended unit cell. Physically, this is 
equivalent to the filling of the chamber before the oil reaches the downstream throats. 
At  the point where there exists enough oil in the extended unit cell to fill 15 yo of each 
of the three downstream unit cells, new interfaces are placed simultaneously at the 
downstream unit cells B, C and D (figure 4e) ,  dividing among them the excess oil 
in proportion to their respective volumes. At the same time, unit cell A regains its 
usual size ( -4h’ < z < ih’) and a xeron is said to have occurred. 

The occurrence of simultaneous xerons into two adjacent CEVSs, and the 
occurrence of a xeron into a CEVS which is adjacent to another CEVS that is already 
occupied by oil are two special cases. When either one of these events occurs, two 
interfaces enter the same unit cell from opposite sides, thus forming a gate unit cell 
with two interfaces. In such situations the question arises whether coelescence will 
take place, or not. Coalescence in a pore (throat or chamber) depends on many factors, 
including the pore geometry, the physical properties of the two fluids, the interfacial 
tension, the interface viscosity (Slattery & Flumerfelt 1978), double ionic-layer 
interactions, the initial positions of the interfaces, the pressure difference between 
the two oil bodies in the pore as a function of time, the hydraulic resistance that the 
aqueous film encounters as it drains away, etc. This problem has not been solved yet. 
Fortunately, self-coalescence (that is, coalescence between different parts of the same 
body of oil) of the retreating oleic phase does not seem to be a factor of primary 
importance, because ‘ self-collisions ’ are relatively rare, and when they occur the 
driving force for self-coalescence is rather small. This is in contrast with the case of 
immiscible tertiary displacement of oil ganglia populations, where coalescence 
between ganglia is of primary importance (Payatakes et a,?. 1980; Payatakes 1982). 

In  the present simulation self-coalescence is not allowed. When two interfaces come 
opposite to each other in the same unit cell, they are kept at least one compartment 
apart. This is done by assuming that the water trapped between two interfaces in 
a unit cell has no passage to escape. Interfaces within the same gate unit cell are still 
allowed to move, but they move in tandem. Experimental work by Rapin (1980) and 
Hinkley ( 1982) shows that self-coalescence occurs in certain situations. The assumption 
of no self-coalescence should then be relaxed in future work. 

2.5.2. Occurrence of a hygron 
The concept of the extended unit cell is also invoked when a gate unit cell becomes 

filled with water (unit cell E,  figure 4 f ) ,  while the adjoining unit cells (F and G ,  
figure 41)  still contain some oil. In  this case, the adjacent oil-filled unit cell (H, 
figure 4g)  takes its extended configuration and a new interface is placed in it, by 
adding the oil from the nearly empty unit cells (F and G).  Physically, this corresponds 
to the situation in which the oil retreats from the throats into the chamber, forming 
a single interface of small curvature. At  this point a hygron is said to have taken 
place. The simulation now proceeds as usual until finally the volume of oil in this 
extended unit cell is equal to or less than the volume of a regular unit cell, at which 
point the EUC shape is dropped (figure 4h) .  

2.5.3. Thread rupture. Pinch-off 
Figure 5 and 6 illustrate two special cases where a gate unit cell becomes filled with 

water (unit cell A). Connected to the common CEVs there is only one other gate unit 
cell (unit cell B), and the other two unit cells contain oil and are connected to the 
remainder of the ganglion (unit cells C and D). The oil in these two unit cells plus 

11-2 
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FIQURE 5. Stages in the simulation of the motion of a 12-CEVS ganglion. Formation of an oil 
thread between two consecutive pores without rupture of the thread. 

the oil remaining in gate unit cell B can be visualized as forming a thread connecting 
two larger masses of oil. Figure 7 shows schematic representations of both situations 
in a porous medium. It is clear that at this point we must determine whether this 
thread of oil is going to rupture and two new interfaces form, or whether the upstream 
mass of oil is going to 'squeeze' through the thread. Rapin (1980) showed in his 
ganglion dynamics visualizations that, depending on the local geometry of the 
medium, either one of these events may occur. 

In order to determine the fate of this interface, a quasi-static analysis of the local 
flow and pressure fields is done. For example, in the situation in figures 5 (a) and 6 (b) we 
proceed as follows. First, we examine the flowrates qc and qD in unit cells C and D. 
There are two possibilities: either qc < 0 and qD < 0 (that is, the oil in both unit 
cells is flowing out of the common node) ; or qc < 0 and qD > 0 (equivalently, qc > 0 
and qD < 0) (that is, the flow in both unit cells is in the same direction). In the first 
case we assume that the interface ruptures, whereas in the second case an analysis 
of the local pressure field is necessary in order to decide the issue. The analysis adopted 
is a rough approximation based on the assumption of pseudostatic conditions (for 
a more general discussion of the problem at hand see the review by Payatakes & Dias 
1984). 
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FIGURE 6. Stages in the simulation of the motion of a 10-CEVS ganglion. Formation of an oil 
thread surrounding a grain with subsequent rupture of the thread. 

The capillary pressure across the interface a t  the oil thread is given by 

where R, and R, denote the two principal radii of curvature for the interface. 
Taking U n e c k  = Pw-Po, where P, and Po are the local pressures of the 

aqueous and of the oleic phase respectively, we assume that the thread ruptures if 
AFneck > -APc, whereas, if APneck < -APc, the oil squeezes through the thread 
without breakup. The criterion for thread rupture may be summarized as 

q C < O ;  q D < o  thread rupture occurs, 

qc < 0; qD > 0 ; APneck > - APc thread rupture O C C U ~ ,  

qc < 0; qD > 0; APneck < -APc oil squeezes through the thread. 
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\ 

Water 

FIQ~RE 7. Idealization of an oil thread (a) formed between two 
consecutive throats and ( b )  surrounding a grain. 

The two principal radii of curvature R, and R, are estimated from the local 
geometry. For example, in the case of a straight thread, such that shown in figures 5 
and 7(a), we assume that the oil thread is a cylinder with diameter equal to the 
mean throat diameter between unit cells C and D. Then 

where d ,  and d D  are the throat diameters of unit cells C and D respectively. 
In the case of a curved thread (figures 6 and 7 b ) ,  the oil thread is considered to 

be a quarter of a torus wrapped around a grain of average diameter, ( d g ) .  Then we 
set 

Figure 5 shows a 12-CEVS ganglion placed in a random network and moving from 
left to right under the applied pressure gradient. In figure 5 (b), unit cell A has just 
been completely filled with water, but there is still some oil left in gate unit cell B. 
The oil in unit cell C is flowing out of the common node, while the flow in unit cell 
D is towards the common node, that is, both flows are in the same direction. When 
the rupture criterion is applied, i t  turns out that -APc > A€',,,,. At this point the 
volume of oil in gate unit cell B is redistributed through gate unit cells A and B and 
the simulation allowed to continue, until later the portion of oil downstream of the 
thread rejoins the main part of the ganglion (figure 5 c ) .  Later, the ganglion ends up 
breaking at another interface (figure 54. 

The formation of an oil thread surrounding a grain is shown in figure 6, where a 
10-CEVS ganglion is placed in a random network. Gate unit cell A gets filled with 
water while gate unit cell B still contains some oil (figure 6 b ) .  In this case the 
calculation of the flowrates through unit cells C and D leads to different directions of 
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flow, and the interface ruptures. Two new interfaces are placed at unit cells C and D, 
and two new ganglia are formed (figure 6c). The smaller ganglion experiences another 
xeron after which i t  becomes stranded, whereas the larger one continues to move 
until i t  finally breaks into other daughter ganglia (figure 6 4 .  

2.6. Formation and stranding of ganglia 
One distinct feature of waterflooding is the splitting off of ganglia from the oil phase 
by the microfingers of the invading aqueous phase. The formation of oil ganglia, which 
under typical flooding conditions become stranded immediately, is responsible for the 
large residual oil saturation at the end of the invasion process. Hence it is important 
to analyse carefully the conditions for the formation and stranding of oil ganglia. 

A ganglion is formed during waterflooding whenever water completely surrounds 
and isolates a fraction of the oil in the porous medium. Assume that at a certain 
instant, a portion of oil has been almost completely encircled by water, save for an 
oil thread connecting it to the main body of oil. I n  the simulation, the rupture of 
the thread is decided by applying the relevant criterion, (22). If rupture occurs and 
a ganglion is formed, we must determine the subsequent behaviour of the ganglion. 
This ganglion may continue to move forward and eventually break into smaller 
daughter ganglia, or it may become immediately stranded. 

As was discussed earlier, according to the present simulation algorithm all 
interfaces advance or recede slightly (by one compartment at the most) during each 
time step. Because a finite step is used, when a ganglion becomes stranded, its 
interfaces move with small steps, back and forth (so that the net effect is that the 
ganglion does not advance or recede). 

This is an unwelcome artifact of the simulation algorithm which had to be removed 
for the following reason. If the interfaces of a stranded ganglion are allowed to move 
back and forth, an artificial flow field is created in the vicinity of the ganglion which, 
in turn, can induce motion of nearby interfaces and affect the outcome of the 
simulation. This effect is particularly noticeable in simulations of free imbibition. 

This artifact was removed by applying a stranding criterion on every ganglion in 
the field at each occurrence of a hygron or a xeron. If a ganglion is determined to 
be stranded, no minor adjustments of its interfaces are made, otherwise the ganglion 
is allowed to move. This approach has two advantages. First, upon deciding that a 
certain ganglion is stranded, it becomes unnecessary to follow the motion of its 
interfaces any further, and the computation time is accordingly reduced. Second, the 
simulation is stopped not just when the oleic phase has been disconnected but rather 
when all ganglia become stranded. 

The stranding criterion used is that developed by Ng & Payatakes (1980). In a 
companion paper, Dias and Payatakes (1986) found that this criterion is in good 
agreement with results obtained with the present simulation method. The stranding 
criterion is simple and can be used as follows. 

For each ganglion formed, the pair of gate unit cells with indexes i = I and k = K 
for which the appendix mobility factor 

become maximum, is identified. Here, ALkt is the distance between throats with 
indices k and i, 8,, is the angle between the line connecting the throats k and i and 
the macroscopic flow direction, JdrSi  is the drainage curvature of the gate unit cell 
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with index i ,  and Jlb,k.  is the lower bound of the imbibition curvature. The values 
of J a r ,  t and Jib, k are given by 

The critical pressure drop for mobilization, AP,, for this pair of gate unit cells, is 

(27 1 given by 
Apcr = uow(Jdr,I-Jlb,K)-  

The value of A€',, given in this way is compared with the corresponding pressure drop 
in the aqueous phase, APK, : 

- If APK, < AP,,, the ganglion is stranded. For computational purposes a null 
pressure drop is imposed across the oil-water interfaces of the ganglion and 
the conductances of the unit cells occupied by the ganglion are set equal to 
nil. In effect, this creates a barrier for the water to penetrate and imposes 
a null flow in these cells. 

- If AP,, 2 AP,,, the ganglion is allowed to move and, at each occurrence of 
a hygron or a xeron, it is checked again whether the ganglion goes on moving, 
gets stranded, or breaks into smaller ganglia. 

3. Displacement simulations 
The porous medium modelled in the results shown below is a 100 x 200 sandpack 

as studied by Leverett (1941). The throat size distribution and other pertinent 
variables for this sandpack were calculated and tabulated by Payatakes et al. (1980) 
and Dias (1984). Its permeability is k = 3.55 x cm2, and the calculated 
permeability of the two-dimensional network is k = 2.78 x cm2. The porosity of 
the sandpack is 0.395 and the grain sizes range from 74 to 194 pm. 

3.1. Free-imbibition simulations 
Free imbibition occurs spontaneously when the aqueous phase is allowed to invade 
the initially oil-saturated porous medium, driven only by the capillary forces that 
exist a t  the oil-water interfaces. 

In  order to simulate free-imbibition conditions, a very small macroscopic pressure 
gradient is applied across a 'short' network so that, in effect, the process is driven 
only by capillary forces. The magnitude of the macroscopic pressure gradient is chosen 
so that the capillary number in the same network virtually depleted of oil would be 
Ca = loe8. 

The results of simulated imbibitions in a 15 x 30 network, for K = 50, 1 and 0.2, 
are shown in figure 8. In order to make the results strictly comparable, the random 
network used in all three simulations is the same (figure 3b). 

As pointed out earlier, the capillary suction that causes imbibition remains of the 
same order of magnitude throughout the entire process, whereas the viscous 
resistance to the flow changes as water replaces the oil in the porous medium. 
Consequently, the actual capillary number is a function of position and time. This 
is shown in figure 9, where the value of Ca (averaged over the cross-section) is plotted 
versus the dimensionless axial distance z/Z at various times during the displacement 
process. 

The major conclusions drawn from these simulations are the following: 
- During free imbibition in short porous-medium samples, Ca can take high 

values; 
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- The lower the value of the viscosity ratio, K ,  the higher the maximum value 
of Ca attained. 

- A t  the end of the displacement process, when all the residual oil has been 
disconnected and stranded, the capillary number becomes small and uniform 
throughout the porous medium. In fact, the ultimate value of Ca is less than 
the nominal value of the simulation (Ca = lo-* for X,,,+O) because the 
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residual value of the oil saturation has a non-zero value, and, therefore, the 
relative permeability to water, kwr, is smaller than unity. 

- For K > 1 the average value of Ca throughout the network increases as the 
water advances through the network, while for K < 1 it  decreases with time. 
This effect is supported by the experimental observation of Legait & Jacquin 
(1982) that, during spontaneous imbibition of water in sandstone samples 
containing oil with viscosity po = 2.25 x Pa s ( K  x 225), the rate of oil 
displacement increased strongly with time. They also observed an increase, 
but much smaller, for K = 1.  Similar observations were reported by Jacquin 
& Legait ( 1984). 

3.2. Imbibition with constant capillary number and dynamic invasion simulations 
As in the case of free imbibition, at the beginning of the invasion process the oleic 
phase is completely connected, and the two fluids are in contact with each other at 
a set of interfaces residing at the entrance of the porous medium (see figure 3). In  
order to achieve a nearly constant value of Ca, the simulations in this section were 
performed on a 15 x 40 network with the outlet unit cells representing a long ‘tail’ 
of the prototype, as described in $2.3. 

The results of three typical simulations obtained with this method are given in 
figure 10. Only the 15 x 30 segment of the network is shown. As in the case of the 
free-imbibition simulations, the network used was random, but the same in all cases, 
in order to isolate the effects of the capillary number and the viscosity ratio. In  the 
first simulation, the flood was performed with Ca = and unfavourable viscosity 
ratio, K = 50. We observe the formation of viscous-capillary microfingers and the 
gradual disconnection of the oleic phase. The residual oil saturation is large, 
So, = 0.51. The second simulation was performed setting K = 1 (po = pw) and 
Ca = lo-*. Here too we observe extensive capillary microfingering. Capillary 
microfingering is due to the interplay between capillary forces and the random 
distribution of pore sizes. The residual oil saturation is somewhat smaller but still 
high, So, = 0.47. The third simulation was performed with K = 0.2 and Ca = 
Here we observe a virtual plug-flow microdisplacement, apparently because the 
favourable viscosity ratio and high rate of deformation suppress capillary micro- 
fingering. As a result, only a few 1-CEVS ganglia are formed and the residual 
oil saturation is small, So, = 0.06. 

A comparison of the system behaviour under different flow conditions is given in 
figures 11 and 12. Here we plot the breakthrough and completion stages of various 
simulations at different values of Ca and K .  The following qualitative observations 
are drawn by inspecting these figures: 

- For unfavourable viscosity ratio ( K  > 1) and low Ca values a high degree of 

- For fixed Ca, the extent of microfingering decreases with increasing K .  

- When K < 1 ,  the extent of microfingering decreases with increasing Ca. 
- When K > 1,  the extent of microfingering increases slightly with the 

capillary number for loT6 5 Ca 5 For Ca 2 the system 
behaviour becomes more complex, as many of the newly formed ganglia keep 
moving for a while, before they break and get stranded. 

- Very high microdisplacement efficiencies are predicted in cases with favour- 
able viscosity ratio ( K  < 1)  and high Ca. 

- Many ganglia of various shapes and sizes are created. As the capillary number 
increases and/or the viscosity ratio decreases, fewer and fewer large ganglia 
are formed. 

microfingering is observed. 
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-The length of the transition zone decreases as Ca Increases and/or K 

- For moderate and high capillary numbers (say Ca 2 the flow regime 
decreases. 

switches from imbibition to dynamic invasion. 

4. Residual oil 
4.1. Residual oil saturation 

Figure 13 shows the average water saturation (discounting the irreducible water 
saturation), Sw-Swi, in a 15 x 30 network as a function of time with Cu and K as 
parameters, and figure 14 shows the residual oil saturation, Sor, as a function of the 
capillary number, Ca, for various values of K .  Both results were obtained by averaging 
the outcomes of over three different realizations in different random networks. The 
same general behaviour was observed in all three simulations, namely : 

-For K < 1, the residual oil saturation remains virtually constant up to 
Ca x 

-For K > 1, So, remains constant for Ca 5 lo-', increases slightly with Ca 
in the range lo-' < Ca 5 5 x and decreases rapidly with increase in Ca 
for Ca > 

-The breakthrough time and the completion time decrease with increasing Ca 
and/or decreasing K .  

-The residual oil saturation increases with increasing K ,  even for small values 
of Ca. We must note here that the relatively high values of So, obtained in 
the present work are characteristic of planar networks, since in such media 
the disconnection of oil to form ganglia is readier than it is in 3-dimensional 
networks (see Payatakes & Dias 1984). 

and then it starts to decrease drastically with increasing Ca. 

4.2. Ganglion size distribution 
Another important result to be obtained from these simulations is the final ganglion 
size distribution. Together with the residual oil saturation it tells us not only how 
much oil is left stranded in the porous medium, but also in which form. This is a very 
important parameter in the modelling of tertiary oil-recovery methods (Payatakes 
et aE. 1980; Dias & Payatakes 1986). 

The ganglion size distributions from the simulation runs discussed above are 
summarized in figures 15 and 16. Each distribution is given in two ways: first, as 
frequency of ganglia, f(8), versus the number of CEVSs occupied by the ganglion s ; 
second, as frequency of ganglia, f(v*), versus the reduced ganglion volume v*. We 
observe the following : 

- For large values of K and Ca, the frequency of large ganglia is comparatively 
high due to more severe viscous-capillary microfingering during displacement. 
This result is in agreement with experimental observations of Egbogah & 
Dawe (1981). 

- The distribution f(8) has a primary maximum at 8 = 1. This means that 
1-CEVS ganglia are the most numerous and contain a large portion of the 
residual oil. This is an important fact, small ganglia are difficult to 
remobilize, even under tertiary recovery conditions (Payatakes et ul. 1980 ; 
Dim & Payatakes 1986). 

- The f(v*) distribution presents a primary maximum at some position well 
to  the right of v* = 1. This is due to the fact that 1-CEVS ganglia may have 
volumes which are larger or smaller than the average CEVS volume, vCEVS, 
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FIGURE 13. Plot of the average water saturation (discounting the irreducible water saturation), 
Sw-Swi, 2)s. time, t ,  for imbibition simulations on a 15 x 30 network representing a 100 x 200 
sandpack, for various values of Ca and K .  0 ,  Breakthrough. 
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FIGURE 14. Plot of the residual oil saturation, Her, v8. the capillary number, Ca, for imbibition 
simulations on a 15 x 30 network representing a 100 x 200 sandpeck, for various values of K .  

and the oil ganglia have a slight tendency to form in CEVSs with large 
volume. This distribution is quite similar to experimental distributions 
reporte'd by Chatzis, Morrow and Lim (1983). However, although those 
experim6ntal results were also obtained in planar media, a direct comparison 
with the present theoretical results is not strictly appropriate, since the 
former results are given in terms of the equivalent diameter of the projected 
area of the ganglion and not in terms of w* (see also Payatakes & Dias 1984). 
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FIQURE 17. Plot of the acceptance fraction, a,@), us. the unit-cell throat diameter, d, for 
microdisplacement simulations on a 15 x 30 network representing a 100 x 200 sandpack, for various 
values of K and Ca. 

4.3. Acceptance fraction 
The acceptance fraction is defined as the number of unit cells with throat diameter 
d that become occupied by the aqueous phase, divided by the total number of unit 
cells of that size in the network. It gives us some idea concerning the size of the pores 
favoured by the advancing water pathways. Figure 17 shows the average acceptance 
fraction, a,(d), for fixed values of Ca and K ,  obtained by averaging results from the 
same three simulation runs (for each value of Ca and K )  as before. We observe the 
following : 

- Small unit cells are invaded by the aqueous phase more frequently than large 
unit cells, especially for small capillary numbers. 
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- For large Ca values, the invading aqueous phase tends to  favour larger unit 
cells, but tthere is no clearcut, sorting, since unit cells of all sizes get invaded. 

- For moderate to high Ca values and small K values the acceptance fraction 
tends to  unity for all unit-cell sizes. This means that most pores get invaded, 
irrespective of their sizes, resulting in a very small residual oil saturation. 

Here we must note that the fact that  u,(d) goes to zero ford = d,,, in all three plots 
could be an artifact of the simulation, caused by the relatively small size of the 
network. The maximum unit cell appears only rarely in the network sample, and it 
is very likely that it would be bypassed by the invading water. We expect that  
a,(dmax) is small, but not nil. 

5. Conclusions 
Immiscible microdisplacement in porous media was modelled in the present work 

by using a network of unit cells of converging-diverging geometry, together with 
standard network analysis and a set of rules for fluid displacement and break-up. This 
model was used to simulate microdisplacement of a non-wetting phase by a wetting 
phase. The method can be used to  study microdisplacement over a wide range of 
capillary-number and viscosity-ratio values. The contact angle can also be varied, 
but in simulations reported here it was set to zero. Since the unit-cell walls are defined 
as continuous functions, all menisci are free to  move at all times. Time is present as 
an explicit variable and rates of displacement can be evaluated. The main shortcomings 
of the simulation method in its present form are: first, the porous-medium model 
pertains to unconsolidated porous media (so that i t  applies to  sandpacks but not to 
consolidated rocks) ; and, second, i t  requires considerable computation time (so that 
it is difficult to apply i t  to large networks). Work already in progress is intended to 
remove these shortcomings. 

Analysis of imbibition and dynamic-invasion simulations leads t o  the following 
conclusions : 

- The operational and physical parameters that  affect microdisplacement are : 
the capillary number; the viscosity ratio; the local geometry of the porous 
medium ; the local oil saturation; the contact angle; the length of the porous 
medium and the boundary conditions. 

- For Cu 5 lo-’ the residual oil saturation is independent of the value of 
Ca . 

- The residual oil saturation decreases with decreasing K ,  even for very small 
Ca values. 

- For favourable viscosity ratio (K < l) ,  the residual oil saturation, Sor, 
decreases as Ca increases (for Ca 2 lop7). For unfavourable viscosity ratio 
(K > l ) ,  So, increases slightly with Cu in the range 
For higher values of Ca, thc residual oil saturation decreases rapidly as Ca 
increases. 

- A flood with favourable viscosity ratio (K < 1) and moderate Ca values (say - lop4) applied right from t,he beginning (that is, not after a low-capillary- 
number flood) gives excellent microdisplacement efficiency. 

- Floods with finite Ca values produce ganglion populations in which one- 
chamber ganglia are the most common. The frequency of large ganglia 
decreases rapidly with size. Few ganglia are larger than 15-20 chambers. 

- A s  Cu-tO (quasi-static imbibition), in addition to the multitude of small 
ganglia, there appear a few very large ganglia, the largest of which have 
dimensions comparable to those of the sample. 

6 Ca 5 5 x 
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- For K > 1, microfingering becomes more intense as Cu and K increase, and 
this results in the formation of some large ganglia. 

- For Cu 2 large ganglia keep moving after they are formed until they 
break up in smaller daughter ganglia which, in turn, get stranded. This 
explains the observation that the residual oil left behind by a flood with K > 1 
and large Ca is composed of numerous small ganglia. 

- For K < 1, as Cu increases microfingering is reduced, fewer and smaller 
ganglia are formed, and the residual saturation decreases. 

- The average size of the pores that become invaded by the wetting phase tends 
to increase with increasing Ca and K .  However, there is no clearcut sorting, 
as pore doublet models imply. 

- For moderate and large Cu values, pores of all sizes get invaded (though not 
with equal frequency). For moderate Ca values and favourable viscosity 
ratio, most pores become invaded, irrespective of their size. 

Most of this work was done at the University of Houston, with support from US 
Department of Energy, Grant No. E(40-1)-5075, and a grant from Schlumberger-Doll 
Research. Some simulations were performed a t  SDR Center. 
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